TO GROW A BUILDING

TO GROW A BUILDING

Totem

To Grow a Building is a research-driven project exploring sustainable architecture through the utilization of 3D-printed structures crafted from locally sourced soil and plant seeds, allowing the seeds to germinate and grow after printing. The roots intertwine within the structure, providing natural reinforcement and strength, reducing the need for traditional building materials. The project aims to combine the precision of digital fabrication with the natural adaptability of plants, contributing to sustainability and the preservation of local plant species. This innovative method was tested by creating a totem-like structure with different geometries and seed types, which was placed in a garden setting where the plants grew, some even reaching harvestable heights.

TOTEM DESIGN TEAM: NOF NATHANSOHN, ELISHEVA GILLIS, YUVAL AYALI, GITIT LINKER BOTANICAL TEAM: TOMER FARAJ, DIKLA LIFSHITZ, EINAV MAYZLISH-GATI.
IMAGES BY NOF NATHANSOHN

TECLA

TECLA

House 3D printed with local soil

TECLA is a fully 3D printed housing unit that integrates traditional building techniques with natural, locally sourced materials. Designed by Mario Cucinella Architects (MCA) and engineered by WASP, it uses recyclable materials from the local soil, making it carbon neutral and adaptable to different climates. The double-dome design combines structure, roof and cladding to ensure efficiency. It was built using two synchronised 3D printers, using automation protocols to optimise movement and efficiency. The soil mix was tailored to local climatic conditions, with solar analysis and computational tools guiding the design to improve thermal performance and energy efficiency. (Chadha, et al., 2024

IMAGE BY WASP

REEFCIRCULAR

REEFCIRCULAR

Turning shell waste into sea life

ReefCircular is dedicated to restoring marine ecosystems transforming shell waste into 3D printed artificial reef structures designed to mimic natural habitats. The ReefKasse system, a modular artificial reef tile, can be easily installed on harbour walls and underwater structures, providing an ideal surface for marine organisms to attach and grow, helping to counteract habitat loss in urban coastal areas. In Hundested, Denmark, 24 artificial reef tiles have been installed to create complex habitats for small fish, seaweed and invertebrates on seawalls and seafloor. The installation process is efficient, taking as little as 30 minutes and requiring no dive teams, making it an accessible solution for biodiversity restoration. The system is currently being tested in clay, which has lower CO2 emissions than concrete, and will be available in shell-based bioconcrete from 2026.


AIRLEMENTS

AIRLEMENTS

Insulated Walls with Sustainable Mineral Foam

Airlements project, developed by researchers at ETH Zürich in partnership with FenX AG, employs large-scale robotic 3D printing to create monolithic, lightweight, and insulated wall systems using cement-free mineral foam crafted from recycled waste. This innovative material, with varying densities, optimizes thermal performance and energy efficiency, reducing operational energy needs for heating. The Airlements prototype showcases rapid, low-energy 3D printing, each 25 kg hollow segment hardening over a week without energyintensive processes. The technology’s versatility allows for non-structural exterior walls and seamless integration of reinforcements.

IMAGE BY: PATRICK BEDARF, DIGITAL BUILDING TECHNOLOGIES, ETH ZURICH

TOVA

TOVA

3d-printed Earth Architecture

The Institute for Advanced Architecture of Catalonia (IAAC) has developed
TOVA, Spain’s first 3D printed earth building, located at the IAAC’s Valldaura
Labs near Barcelona. Built in seven weeks using the Crane WASP 3D printer,
TOVA uses 100% local materials sourced within a 50-metre radius, resulting
in zero waste and minimal carbon emissions.
The walls of the structure are made of local soil mixed with additives and
enzymes to improve structural integrity and elasticity for optimised 3D print-
ing. The foundation is made of geopolymer and the roof is made of wood.
TOVA serves as a prototype bridging traditional earthen architecture and
modern 3D printing technology, offering a potential solution to current
­ climate and housing challenges.

IMAGE BY GREGORI CIVERA

HIVE Project

HIVE PROJECT

Traditional Craftsmanship and Digital Innovation

The HIVE project is a 3D printed masonry wall built by a team from the University of Waterloo in Toronto, Canada. Designed by SDI Interior Design for Investment Management Corporation of Ontario, the wall is made of 175 unique 3D printed clay bricks, each designed with different openings to balance privacy and light transmission. The hexagonal aggregation of these units creates a structurally efficient form reminiscent of a honeycomb. The development process involved extensive testing of materials, designs and manufacturing techniques. The team combined traditional ceramic materials with advanced geometric design and robotic precision to achieve the final structure. This approach blends the principles of traditional ceramic craftsmanship with modern technology, allowing for new forms of material expression and geometric complexity in masonry construction.

IMAGES BY SHABAAN KHOKHAR

HEXASTONE

HEXASTONE

Design for disassembly

The Hexastone Pavilion, a collaboration between Technische Hochschule Lübeck, Vertico, and Sika, is a 4.5-meter diameter dome composed of 102 unique interlocking stones. Each stone was 3D-printed over two days, utilizing a fully digitized process that allows for a vast range of geometries. The pavilion’s design employs a computational form-finding process to create a compression-only shell structure. Designed with sustainability in mind, the pavilion embraces a “Design for Disassembly” approach. The shell is tessellated into planar hexagonal tiles, facilitating efficient printing on a flat bed and simplifying the connections between individual stones. Unlike traditional brickwork that uses tapered mortar joints to achieve curvature, Hexastone generates curvature through the individually inclined perimeters of each hexagonal stone, resulting in parallel crevices between them. Contact surfaces are coated with a non-adhesive agent to prevent tensile force transfer and facilitate easier disassembly, promoting a sustainable construction methodology.

IMAGE COURTESY OF TECHNISCHE HOCHSCHULE LÜBECK

reMARBL3D

reMARBL3D

at TIME SPACE EXISTENCE, Venice, 2023

Researchers at ETH Zurich and SUPSI’s Institute of Earth Sciences have developed a dry-assembled funicular floor composed of 17 blocks 3D printed with recycled marble aggregates – approximately 80% of the printed material.

This 3D printing process enables the manufacture of large-scale components suitable for structural applications using byproducts of stone extraction.

The disposal of construction and quarry waste poses a significant environmental challenge, with up to 40% of this waste ending up in landfill. By transforming this waste into valuable construction products, the research addresses both waste management and the need for new materials.

The 3D printing method used is Binder Jetting (BJT), which uses a two-component binder system. A granular base is combined with an activating liquid alkali solution, which is sprayed through nozzles in layers, resulting in durable printed parts with excellent mechanical properties and resistance to weather and fire.

Source: reMARBL3D
Source: reMARBL3D

3DCP sætter betonprint på skoleskemaet sammen med Herningsholm Erhvervsskole

I et undervisningsforløb mellem 3DCP Group og Herningsholm Erhvervsskole har de studerende fået mulighed for at prøve kræfter med 3D print i byggeindustrien.

Se med, når både Mikkel Brich, CEO 3DCP Group samt elever og underviser fra Herningsholm fortæller om projektet og hvad det giver at få 3D print som en integreret del af undervisningen, når man f.eks. er i uddannelse som tømrer. Se hvordan 3D-printede ler-miniaturer kan relateres til de helt store print i beton, som 3DCP Group laver i fuld størrelse.

 


Efteruddannelse gav Peter en bred viden om AM

Da IBA Nexttech første gang afviklede ’Introduktion til industriel 3D-print’, var Peter Nissen fra LEGO System A/S blandt deltagerne på efteruddannelsen. Peter arbejder som værktøjsmager, og han er blevet vant til at arbejde med additive manufacturing i sin hverdag.

- Jeg synes, det er en virkelig spændende teknologi. Den åbner for utroligt mange muligheder, når du skal løse en opgave, fortæller Peter Nissen.

Hos LEGO arbejder han altid i metal, når han formgiver nye emner. Men i løbet af de fire undervisningsdage på ’Introduktion til Additive Manufacturing’ blev han og resten af holdet sat ind i en række af de centrale teknologier, man kan benytte – herunder pulverprint, resinprint og trådprint.

- Uanset hvilken teknologi, du anvender, er der vigtige krav til dit design. For du kan 3D-printe næsten alt, men dit emne skal jo også være holdbart. Ved du ikke nok om styrkelære, part orientering og support, risikerer du, at dit arbejde ender lige i skraldespanden. Det er noget af det, man får rigtig godt forklaret i løbet af undervisningen på IBA, fortæller Peter.


IBA har planlagt to nye holdstarter i ’Introduktion til industriel 3D-print’. Værktøjsmager Peter Nissen fra LEGO System A/S deltog, da efteruddannelsen blev lanceret i 2024.

Han kom selv til at arbejde med additive manufacturing ved lidt af et tilfælde. Det var en kollega hos LEGO, som spurgte, om det mon ikke var noget for ham. Kollegaen introducerede ham til 3D-printeren, og så var Peter i gang.

Senere var det så en chef, der spurgte, om han mon ville deltage på ’Introduktion til Additive Manufacturing’ på IBA. Det kan man tilmed søge tilskud til som efteruddannelse. Man kan blandt andet søge Omstillingsfonden til at dække udgiften til forløbet. Det foregår nemt, samtidig med at man udfylder sin ansøgning.

- Jeg fik genopfrisket min viden, så det fungerede rigtig godt som grundforløb. Samtidig fik jeg en bred baggrundsviden om alle de andre muligheder, man har med 3D-print teknologi, siger Peter.

Han tilføjer:

- Underviserne var godt inde i stoffet og vidste, hvad de talte om. Så hvis man har interesse for at arbejde med additive manufacturing, får man en rigtig god introduktion på IBA.

IBA tog hul på AM-efteruddannelsen i 2024, og erfaringerne herfra bliver brugt i det videre arbejde. De næste hold i ’Introduktion til industriel 3D-print’ har planlagt holdstart den 12. marts og 30. april i 2025. På IBAs hjemmeside er der mulighed for at læse mere om både uddannelsen og mulighed for at søge tilskud.

Hvis du vil høre om mulighederne med AM for din virksomhed, så ræk gerne ud til os her.

Forløb i marts og april 2025